Combining Methods for Dynamic Multiple Classifier Systems

نویسنده

  • Amber Tomas
چکیده

Most of what we know about multiple classifier systems is based on empirical findings, rather than theoretical results. Although there exist some theoretical results for simple and weighted averaging, it is difficult to gain an intuitive feel for classifier combination. In this paper we derive a bound on the region of the feature space in which the decision boundary can lie, for several methods of classifier combination using non-negative weights. This includes simple and weighted averaging of classifier outputs, and allows for a more intuitive understanding of the influence of the classifiers combined. We then apply this result to the design of a multiple logistic model for classifier combination in dynamic scenarios, and discuss its relevance to the concept of diversity amongst a set of classifiers. We consider the use of pairs of classifiers trained on label-swapped data, and deduce that although non-negative weights may be beneficial in stationary classification scenarios, for dynamic problems it is often necessary to use unconstrained weights for the combination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system

Background: In breast magnetic resonance imaging (MRI) analysis for lesion detection and classification, radiologists agree that both morphological and dynamic features are important to differentiate benign from malignant lesions. We propose a multiple classifier system (MCS) to classify breast lesions on dynamic contrast-enhanced MRI (DCE-MRI) combining morphological features and dynamic infor...

متن کامل

Combining Multiple Classifiers with Dynamic Weighted Voting

When a multiple classifier system is employed, one of the most popular methods to accomplish the classifier fusion is the simple majority voting. However, when the performance of the ensemble members is not uniform, the efficiency of this type of voting generally results affected negatively. In the present paper, new functions for dynamic weighting in classifier fusion are introduced. Experimen...

متن کامل

Methods for Dynamic Classifier Selection

In the field of pattern recognition, the concept of Multiple Classifier Systems (MCSs) was proposed as a method for the development of high performance classification systems. At present, the common “operation” mechanism of MCSs is the “combination” of classifiers outputs. Recently, some researchers pointed out the potentialities of “dynamic classifier selection” as a new operation mechanism. I...

متن کامل

Dynamic Classifier Selection

At present, the usual operation mechanism of multiple classifier systems is the combination of classifier outputs. Recently, some researchers have pointed out the potentialities of “dynamic classifier selection” as an alternative operation mechanism. However, such potentialities have been motivated so far by experimental results and qualitative arguments. This paper is aimed to provide a theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008